A Constituent-Based Approach to Argument Labeling with Joint Inference in Discourse Parsing
نویسندگان
چکیده
Discourse parsing is a challenging task and plays a critical role in discourse analysis. In this paper, we focus on labeling full argument spans of discourse connectives in the Penn Discourse Treebank (PDTB). Previous studies cast this task as a linear tagging or subtree extraction problem. In this paper, we propose a novel constituent-based approach to argument labeling, which integrates the advantages of both linear tagging and subtree extraction. In particular, the proposed approach unifies intraand intersentence cases by treating the immediately preceding sentence as a special constituent. Besides, a joint inference mechanism is introduced to incorporate global information across arguments into our constituent-based approach via integer linear programming. Evaluation on PDTB shows significant performance improvements of our constituent-based approach over the best state-of-the-art system. It also shows the effectiveness of our joint inference mechanism in modeling global information across arguments.
منابع مشابه
Shallow Discourse Parsing with Conditional Random Fields
Parsing discourse is a challenging natural language processing task. In this paper we take a data driven approach to identify arguments of explicit discourse connectives. In contrast to previous work we do not make any assumptions on the span of arguments and consider parsing as a token-level sequence labeling task. We design the argument segmentation task as a cascade of decisions based on con...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملThe Importance of Syntactic Parsing and Inference in Semantic Role Labeling
We present a general framework for semantic role labeling. The framework combines a machine learning technique with an integer linear programming based inference procedure, which incorporates linguistic and structural constraints into a global decision process. Within this framework, we study the role of syntactic parsing information in semantic role labeling. We show that full syntactic parsin...
متن کاملThe UniTN Discourse Parser in CoNLL 2015 Shared Task: Token-level Sequence Labeling with Argument-specific Models
Penn Discourse Treebank style discourse parsing is a composite task of identifying discourse relations (explicit or nonexplicit), their connective and argument spans, and assigning a sense to these relations from the hierarchy of senses. In this paper we describe University of Trento parser submitted to CoNLL 2015 Shared Task on Shallow Discourse Parsing. The span detection tasks for explicit r...
متن کاملDiscourse Segmentation of German Texts
This paper addresses the problem of segmenting German texts into minimal discourse units, as they are needed, for example, in RST-based discourse parsing. We discuss relevant variants of the problem, introduce the design of our annotation guidelines, and provide the results of an extensive interannotator agreement study of the corpus. Afterwards, we report on our experiments with three automati...
متن کامل